Optical Characterization of Strong UV Luminescence Emitted from the Excitonic Edge of Nickel Oxide Nanotowers

نویسندگان

  • Ching-Hwa Ho
  • Yi-Ming Kuo
  • Ching-Hsiang Chan
  • Yuan-Ron Ma
چکیده

NiO had been claimed to have the potential for application in transparent conducting oxide, electrochromic device for light control, and nonvolatile memory device. However, the detailed study of excitonic transition and light-emission property of NiO has rarely been explored to date. In this work, we demonstrate strong exciton-complex emission of high-quality NiO nanotowers grown by hot-filament metal-oxide vapor deposition with photoluminescence as an evaluation tool. Fine and clear emission features coming from the excitonic edge of the NiO are obviously observed in the photoluminescence spectra. A main excitonic emission of ~3.25 eV at 300 K can be decomposed into free exciton, bound excitons, and donor-acceptor-pair irradiations at lowered temperatures down to 10 K. The band-edge excitonic structure for the NiO nanocrystals has been evaluated and analyzed by transmission and thermoreflectacne measurements herein. All the experimental results demonstrate the cubic NiO thin-film nanotower is an applicable direct-band-gap material appropriate for UV luminescence and transparent-conducting-oxide applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study

In the present work, we report preparation of NiO nanoparticles with well-defined plate morphology by solid-state reaction of NiCl2∙6H2O and the Schiff base ligand N,N′-bis-(3-methoxysalicylidene)benzene-1,4-diamine), as a novel precursor via solid state thermal decomposition method. This method is a simple and environmentally friendly for preparing t...

متن کامل

Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles

Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...

متن کامل

Binuclear Nickel(II) Complex Containing 6-Methyl-2,2'-bipyridine and Chloride Ligands: Synthesis, Characterization, Thermal Analyses, and Crystal Structure Determination

A new binuclear complex of [{NiCl(6-mbipy)}2(μ-Cl)2] (1) was prepared from the reaction of NiCl2.6H2O and 6-methyl-2,2'-bipyridine (6-mbipy)  in a mixture of methanol and acetonitrile. Suitable crystals of 1 for X-ray diffraction measurement were obtained by slow evaporation of the resulted green solution at room ...

متن کامل

NiO Nanoparticles: Synthesis and Characterization

In the current paper,Nanostructured Nickel oxide (NiO) were synthesized by co-precipitation method using Nickel(II) Chloride Hexahydrate (NiCl2.6H2O) and sodium hydroxide (NaOH) as starting material. Structural, optical and magnetic properties of nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic force microscope (AFM), UV–Vis absorption; Fo...

متن کامل

Luminescence and scintillation characterization of Silver doped KCl single crystal grown by Czochralski technique for photonic applications

In this study, the scintillation and optical properties of pure and silver doped potassium chloride (KCl:Ag) single crystals were reported. Pure and doped KCl bulk single crystals with a good optical quality and free from cracks were grown from the melt using Czochralski technique. Different analysis methods were used to study the optical and scintillation properties of the grown crystals. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015